赫夫曼树

介绍

  1. 给定 n 个权值作为 n 个叶子结点,构造一棵二叉树,若该树的带权路径长度(wpl)达到最小,称这样的二叉树为最优二叉树,也称为哈夫曼树(Huffman Tree), 还有的书翻译为霍夫曼树。

  2. 赫夫曼树是带权路径长度最短的树,权值较大的结点离根较近

赫夫曼树几个重要概念和举例说明

  1. 路径和路径长度:在一棵树中,从一个结点往下可以达到的孩子或孙子结点之间的通路,称为路径。通路 中分支的数目称为路径长度。若规定根结点的层数为 1,则从根结点到第 L 层结点的路径长度为 L-1

  2. 结点的权及带权路径长度:若将树中结点赋给一个有着某种含义的数值,则这个数值称为该结点的权。结点的带权路径长度为:从根结点到该结点之间的路径长度与该结点的权的乘积

  3. 树的带权路径长度:树的带权路径长度规定为所有叶子结点的带权路径长度之和,记为 WPL(weighted path length) ,权值越大的结点离根结点越近的二叉树才是最优二叉树。

  4. WPL 最小的就是赫夫曼树

HeffmanTree01

赫夫曼树创建思路图解

给你一个数列 {13, 7, 8, 3, 29, 6, 1},要求转成一颗赫夫曼树.

  • 思路分析(示意图): {13, 7, 8, 3, 29, 6, 1}

构成赫夫曼树的步骤:

  1. 从小到大进行排序, 将每一个数据,每个数据都是一个节点 , 每个节点可以看成是一颗最简单的二叉树

  2. 取出根节点权值最小的两颗二叉树

  3. 组成一颗新的二叉树, 该新的二叉树的根节点的权值是前面两颗二叉树根节点权值的和

  4. 再将这颗新的二叉树,以根节点的权值大小 再次排序, 不断重复 1-2-3-4 的步骤,直到数列中,所有的数据都被处理,就得到一颗赫夫曼树

  5. 图解:

HeffmanTree02

代码实现

Last updated

Was this helpful?